

DIFFERENT MORPHOLOGY OF CHRYSOTILE AND CROCIDOLITE FIBERS

DIFFERENT TOXICITIES OF ASBESTOS FIBERS

- The cell membrane is the first target of asbestos fibers.
- Chrysotile asbestos (positively charged) is lytic to cells at high concentrations.
- Less toxic (neutral or negatively charged) asbestos (Crocidolite, Amosite) generates oxidants by iron-dependent reactions and frustrated phagocytosis.
- Long (>8microns) asbestos fibers are more toxic, mitogenic and pathogenic than short fibers.

FIBERS VS. PARTICLES

CELL PROLIFERATION AND PROTOONCOGENE EXPRESSION ARE HALLMARKS OF ASBESTOS-INDUCED CANCERS

INITIATION (Genetic Damage) Cell Replication **SMOKING** SV40 Tag

PROMOTION (Fibrosis)

Cell Replication

COLONY FORMING ABILITY OF HUMAN MET 5A CELLS AND RAT PLEURAL MESOTHELIAL (RPM) CELLS FOLLOWING EXPOSURE TO ASBESTOS

MECHANISMS OF ASBESTOS-INDUCED PROLIFERATION

STRATEGIES FOR DETERMINING DOSE RESPONSE RELATIONSHIPS BY ASBESTOS TYPES

- 1. Gene expression (mRNA) studies in mesothelial/epithelial cells in vitro fos/jun family.
- 2. Confirmatory studies using rat inhalation models
 - c-jun* mRNA levels, odc mRNA levels, DNA synthesis (5'-BrdU)
 - Fibrosis (hydroxyproline)

^{*}Timblin et al., Cancer Res. 55: 2723-6, 1995.

GENE EXPRESSION OF PROTOONCOGENES AFTER EXPOSURE OF RAT PLEURAL MESOTHELIAL (RPM) CELLS TO ASBESTOS

GENE EXPRESSION OF fos/jun PROTOONCOGENES AFTER EXPOSURE OF C10 LUNG EPITHELIAL CELLS TO * p<0.05 CROCIDOLITE ASBESTOS

CAVEATS OF IN VITRO STUDIES

- Cell type-specific responses exist (Difficult to extrapolate doses/results from lab to lab).
- Do not reflect clearance/dissolution of fibers in vivo SVF effects vs. Asbestos.
- Doses cannot be extrapolated to exposures or lung burden data in man.
- Doses (mass/area) often not useful for fiber type comparisons.
- Particle (non-pathogenic) controls often not included.

RAT INHALATION STUDIES

	<u>Crocio</u>	<u>dolite</u>	<u>Chrysotile</u>		
	High 8.25*[2800]	Low 0.16[60]	High 8.23[2457]	Low 0.18[32]	
5'BrdU Bronch. Epith. Mesothelial	>(5d) >(20d)	N.D. N.D.	>(5d) >(5d)	- -	
<u>c-jun</u>	>	_	_	-	
<u>odc</u>	>	_	_	_	
<u>Hydroxyproline</u>	>	_	_	_	

^{*}Time-weighted average concentration (mg/m³ air)

From Quinlan et al. Am J Path 147: 728-739, 1995; Quinlan et al., Am J Resp Crit Care Med 150: 200-206, 1994; BeruBe et al., Tox Appl Pharm 137: 67-74, 1996.

^{[] =} Number of fibers > 5microns/cc air by PCM.

FIBER SIZE AND PROLIFERATION

- Long glass fibers (>5μ) are more potent than short fibers/particles in activating kinases (Ye et al., JBC 276:5360, 2001) or transcription factors.
- Compositional differences may also be important in long asbestos fiber stimulation of growth factor receptors (Pache et al., 1998).

FIBER SIZE AND PROLIFERATION

- Studies measuring proliferation in vitro by a number of markers (ODC, ³H-thymidine, cell counts, metaplasia) show lack of or negligible effects of short fibers (<5μ) – Woodsworth *et al.*, 1983; Marsh and Mossman, 1988.
- Intratracheal instillation of long vs short crocidolite fibers in mice show lack of epithelial cell proliferation in response to short fibers (Adamson and Bowden, 1987 a, b).

CROCIDOLITE ASBESTOS AND CELL SIGNALING

- Asbestos fibers interact with receptors (EGFR) to induce Extracellular Signal-Regulated Kinases (ERKs), phosphorylation and activity in pulmonary epithelial and mesothelial cells.
- Protracted increases in mRNA levels of various AP-1 member protooncogenes most importantly, ERKdependent *c-fos*, *c-jun*, and *fra-1* are observed.

MECHANISMS OF ASBESTOS-CELL SIGNALING

RAT MESOTHELIOMAS HAVE HIGHER LEVELS OF AP-1 THAN NORMAL RPM CELLS

ASBESTOS EXPOSURE CAUSES PROTRACTED EXPRESSION OF FRA-1 IN RPM CELLS

ERK-1 DEPENDENT FRA-1 IN AP-1 COMPLEXES IS INHIBITED BY THE MEK1 INHIBITOR, PD90859 (30μ M)

INHIBITION OF ERK-DEPENDENT FRA-1 REVERSES THE MALIGNANT PHENOTYPE OF RAT MESOTHELIOMAS

Meso 23

Meso 52

INHIBITION OF ERK-DEPENDENT FRA-1 REVERSES THE MALIGNANT PHENOTYPE OF RAT MESOTHELIOMAS

MICROARRAYS AND RNA INTERFERENCE (RNAi) LINK fra-1 TO EXPRESSION OF MIGRATION/MOTILITY GENES

- Oligonucleotide microarray analysis (Affymetrix chip) on RPM, RPM exposed to crocidolite (5μg/cm²) for 24 hr, 3 rat mesotheliomas.
- Selected gene expression, including fra-1 confirmed by Real Time Q-PCR.
- RPM cells transfected (Oligofectamine) with an siRNA fra-1 duplex or an siRNA scramble duplex (control) before Real Time Q-PCR on selected gene expression in response to asbestos.

COMPARISONS OF CHANGES IN GENE EXPRESSION USING REAL TIME Q-PCR (TAQMAN) AND MICROARRAY ANALYSIS

<u>Gene</u>	Method	RPM	Asb	<u>Meso 11</u>	Meso 23	<u>Meso 52</u>
fra-1	Taqman	1	9	219	117	311
	Microarray	1	10	289	319	677
cd44	Taqman	1	17	123	147	279
	Microarray	1	1.5	2	4	5
c-met	Taqman	1	3	7	16	9
	Microarray	1	2	30	54	19
High Mobility	Taqman	1	5	253	432	709
Group						
	Microarray	1	3	8	15	23
gadd45	Taqman	1	5	10	24	32
	Microarray	1	5	4	3	4

EFFECT OF siFRA-1 ON EXPRESSION OF SELECTED GENES UPREGULATED BY ASBESTOS IN RPM CELLS

UPREGULATION OF fra-1 IN HUMAN MESOTHELIAL CELLS (HMC) EXPOSED TO ASBESTOS AND IN MESOTHELIOMAS

ASBESTOS SIGNALING, PROLIFERATION AND CARCINOGENESIS

TRIPLE LABELING OF SIGNALING PROTEINS IN MOUSE LUNGS

^{*} mouse monoclonal PKCδ (blue), rabbit polyclonal p-ERK(red) and rat monoclonal Ki-67(green) antibodies

Mossman Laboratory

Maria Ramos-Nino, Ph.D.

Marcella Martinelli, Ph.D.

Luca Scapoli, Ph.D.

Cindy Timblin, Ph.D.

Arti Shukla, Ph.D.

Brian Manning, M.S.

Max MacPherson

Trisha Flanders

Astrid Haegans

Maria Stern

Collaborators:

Mauro Tognon, Ph.D.

Luciano Mutti, M.D., Ph.D.

Michele Carbone, M.D., Ph.D.

Susan Land, Ph.D.

Nicholas Heintz, Ph.D.

Supported by grants from NIEHS and NHLBI